Advancing Ecosystem Service Inclusion in BCA at the Local Level: FEMA Policy Impacts in Southern Wisconsin

Nora Wahlund,

Earth Economics

Lola Flores,

Earth Economics

Alan Lulloff,

Association of State Floodplain Managers

Jeff Stone,

Association of State Floodplain Managers

David Fowler,

Consultant

- Founded in 1998 by David Batker (via Herman Daly, World Bank, Greenpeace)
- WA state based 501(c)3 non-profit
- Focus: Ecosystem Services Valuations to:
 - Champion sustainability
 - Invent novel win-win funding mechanisms for ecosystem preservation
 - Influence policy
 - Reform Accounting Rules
- Our tagline: "We Value the Earth"

Sample Earth Economics Projects

- 1. Ecosystem Service Valuations (ESVs) at many scales & types:
 - Entire Colorado River Basin
 - Alaska "Mat-Su" Valley (Anchorage to Mt. McKinley)
 - Tulalip & Nisqually Tribe Valuations, WA State
 - Colombia (Legal Settlement for Anchicaya River Damages)
 - Long Island Sound Watershed
 - Costa Rica: Coastal Forests
 - Central and Northern California (9 counties)
 - Upper Mississippi watersheds
 - Mississippi Delta and storm-surge protection
- 2. Data Provider to FEMA's Benefit Cost Analysis Tool
- 3. "21st Century Utilities" (reforming US GASB Accounting Rules)
- 4. Green Jobs
- 5. Core to all our work: Ecosystem Valuation Toolkit (EVT)

Current and past projects: eartheconomics.org/WhatWeDo.aspx

III. POLICY STATEMENT:

FEMA will allow the inclusion of environmental benefits in benefit-cost analyses (BCA) to determine cost effectiveness of acquisition projects.

IV. PURPOSE:

The purpose of this policy is to identify and quantify the types of environmental benefits that FEMA will consider in the BCA for acquisition projects.

Table I: Annual Estimated Monetary Benefits per Acre per Year

Environmental Benefit	Green Open Space	Riparian
Aesthetic Value	\$1,623	\$582
Air Quality	\$204	\$215
Biological Control		\$164
Climate Regulation	\$13	\$204
Erosion Control	\$65	\$11,447
Flood Hazard Reduction		\$4,007
Food Provisioning		\$609
Habitat		\$835
Pollination	\$290	
Recreation/Tourism	\$5,365	\$15,178
Storm Water Retention	\$293	
Water Filtration		\$4,252
Total Estimated Benefits	\$7,853	\$37,493

What is the impact on the ground?

Our hypotheses:

- The new BCA mitigation policy will help expand floodplain access for rivers and streams.
- By establishing a threshold for automatic cost-effectiveness, acquisition and elevation applications will become much simpler for the towns, counties, and states involved.

Case Study 1: Jefferson County

Do the new policies change acquisition funding during a federal disaster?

DR-1933

 July, 2010, significant flooding throughout southern Wisconsin.

- 12 inches of rain in 24 hours

- 32,000 people without power

 Ultimately over \$50 Million federal dollars contributed to the recovery efforts

37 high priority properties for

acquisition

 Only 20 in the final proposal to FEMA with BCR=1.04

• \$1.3 million provided from

HMGP funds

Our Approach

- Rerun the BCA Toolkit V5.0 with the new policies in mind.
- Ask ourselves and the toolkit if we can get every property to pass the 1.0 BCR threshold.

Preliminary Results

- After inflation, only four of the properties were above the automatic cost effectiveness threshold.
- Of the four, only one qualified for including ES on its own.
- Because of the way that bundling can occur for project applications, ASFPM and WI EM were able to demonstrate that all 37 properties could have reached a 1.0 BCR.

Case Study 2: City of Portage

Ecosystem Services and Stormwater Management

Original FEMA application

- Submitted February 2012
- Requested about \$430,000
- Construct a parallel storm sewer to an existing sewer line that would alleviate flooding and damages to residential properties.
- The project proposed was meant to increase storm sewer drainage capacity for short duration storm events

FEMA Response

Cost: 440,249
 Benefits: 472,855

Benefit-Cost Ratio of 1.07

FEMA throws out many of the benefits

Benefit-Cost Ratio of 0.11

Alternative Approaches

- We believe that the current proposal to add another 36 inch pipe, connect little mud lake and big mud lake, and dredge the flow from big mud lake – is not the most effective or efficient means of solving the problem. The following alternatives were recommended instead:
- Placing rain gardens around the neighborhood
- Voluntary purchasing 1-2 properties in the lowest area to convert to detention basins
- Installing permeable pavement above the low spot to slow flow down.

Rain Gardens vs. Gray Infrastructure (dredging, storm sewer, upgrade lift stations, raise sidewalks and/or alleys)

	Rain Gardens	Gray Infrastructure (not specified)
Ecosystem	Increase urban greenspace areas Increase Riparian Area (wetlands?) Increase Open Canopy Area	No Effect
Water Quality	Increase Sediment Retention Increase Nutrient Retention Increase Pollutant Retention Decrease Water Temperature	Increase Sediment Retention Increase Nutrient Retention Increase Pollutant Retention Increase Water Temperature
Moderation of Extreme Events	Decrease Velocity Decrease Flooding Severity Increase Consistency of Flow Increase Late Season Flow	Decrease Stormwater Runoff Velocity Decrease Flooding Severity
Habitat	Increase Wildlife Habitat Increase Insect Habitat	Decreases Wildlife Habitat Decreases Insect Habitat
Ain Ovality	In avenue a very evel of air well when the	No Effect
Air Quality	Increase removal of air pollutants	NO Effect
Water Supply	Increase Surface Water Storage Increase Groundwater Storage Increase Water Depth	Increase Surface Water Storage
Biological Control	Increase insect visitation	Decrease insect habitat
Climate stability	Increase carbon sequestration and storage	No Effect
Pollination	Increase genetic variability	No Effect
Pollination	Increase genetic variability	INO Effect
Aesthetic information	Increase value to nearby properties Increase aesthetic beauty	Decrease property value Decrease aesthetic beauty
Science and education	Increase area to interact with nature Increase areas to promote hands on learning	No Effect
nics Francmic Renefits	Value Appreciates Over Time	Value Depreciates Over Time

Area for alternative approaches

Questions?

Nora Wahlund

nwahlund@eartheconomics.org

Reports available at eartheconomics.org

